# # # # Automatic 'Driving File' written out by MICRESS. # # MICRESS binary # ============== # version number: 6.402 (Linux) # compiled: 03/22/2018 # compiler version: Intel 1400 20140120 # executable architecture: x64 # Thermo-Calc coupling: disabled # OpenMP: disabled # shell: /bin/tcsh # ('double precision' binary) # # # Language settings # ================= # Please select a language: 'English', 'Deutsch' or 'Francais' English # # # Flags and settings # ================== # # Geometry # -------- # Grid size? # (for 2D calculations: CellsY=1, for 1D calculations: CellsX=1, CellsY=1) # Cells in X-direction (CellsX): 1 # Cells in Y-direction (CellsY): 1 # Cells in Z-direction (CellsZ): 2400 # Cell dimension (grid spacing in micrometers): # (optionally followed by rescaling factor for the output in the form of '3/4') 0.2500000 # # Flags # ----- # Type of coupling? # Options: phase concentration [volume_change] temperature temp_cyl_coord # [stress] [stress_coupled] [flow] [flow_coarse] [dislocation] concentration # Type of potential? # Options: double_obstacle multi_obstacle [fd_correction] double_obstacle fd_correction # Enable one dimensional far field approximation for diffusion? # Options: 1d_far_field 1d_far_field_EW no_1d_far_field no_1d_far_field # Shall an additional 1D field be defined in z direction # for temperature coupling? # Options: no_1d_temp 1d_temp 1d_temp_cylinder 1d_temp_polar [kin. Coeff] # kin. Coeff: Kinetics of latent heat release (default is 0.01) no_1d_temp # # Phase field data structure # -------------------------- # Coefficient for initial dimension of field iFace # [minimum usage] [target usage] 0.1 # Coefficient for initial dimension of field nTupel # [minimum usage] [target usage] 0.1 # # # Restart options # =============== # Restart using old results? # Options: new restart [reset_time | structure_only] new # # # Name of output files # ==================== # Name of result files? Results/Ternary/Eq_EqPhad # Overwrite files with the same name? # Options: overwrite write_protected append # [zipped|not_zipped|vtk] # [unix|windows|non_native] overwrite # # # Selection of the outputs # ======================== # [legacy|verbose|terse] # Finish selection of outputs with 'end_of_outputs'. terse out_phases tab_fractions out_conc out_conc_phase 1 | 2 out_mobility # out_restart ! [wallclock time, h.] # out_grains # out_fraction ! [phase number] # out_interface ! [sharp] # out_driv_force # out_relin # out_curvature # out_velocity # tab_grains ! [extra|standard] # tab_vnm # tab_grain_data # out_temp # tab_conc # out_recrystall # tab_recrystall # out_disloc # out_miller # out_orientation # tab_orientation ! [rotmat] # tab_lin # tab_log ! [simulation time, s] [wallclock time, min] end_of_outputs # # # Time input data # =============== # Finish input of output times (in seconds) with 'end_of_simulation' # 'regularly-spaced' outputs can be set with 'linear_step' # or 'logarithmic_step' and then specifying the increment # and end value # ('automatic_outputs' optionally followed by the number # of outputs can be used in conjuction with 'linear_from_file') # 'first' : additional output for first time-step # 'end_at_temperature' : additional output and end of simulation # at given temperature linear_step 1.0 300.0 end_of_simulation # Time-step? # Options: fix ...[s] automatic automatic_limited automatic_limited # Options: constant from_file constant # Limits: (real) min./s, [max./s], [phase-field factor], [segregation factor] 1.E-4 1.0 # Coefficient for phase-field criterion 1.00 # Coefficient for segregation criterion 0.900 # Number of steps to adjust profiles of initially sharp interfaces [exclude_inactive]? 20 # # # Phase data # ========== # Number of distinct solid phases? 2 # # Data for phase 1: # ----------------- # Simulation of recrystallisation in phase 1? # Options: recrystall no_recrystall [verbose|no_verbose] no_recrystall # Is phase 1 anisotrop? # Options: isotropic anisotropic faceted_a faceted_b antifaceted anisotropic # Crystal symmetry of the phase? # Options: none cubic hexagonal tetragonal orthorhombic cubic # Should grains of phase 1 be reduced to categories? # Options: categorize no_categorize no_categorize # # Data for phase 2: # ----------------- # [identical phase number] # Simulation of recrystallisation in phase 2? # Options: recrystall no_recrystall [verbose|no_verbose] no_recrystall # Is phase 2 anisotrop? # Options: isotropic anisotropic faceted_a faceted_b antifaceted anisotropic # Crystal symmetry of the phase? # Options: none cubic hexagonal tetragonal orthorhombic cubic # Should grains of phase 2 be reduced to categories? # Options: categorize no_categorize no_categorize # # Orientation # ----------- # How shall grain orientations be defined? # Options: angle_2d euler_zxz angle_axis miller_indices quaternion miller_indices # # # Grain input # =========== # Type of grain positioning? # Options: deterministic random [deterministic_infile] from_file deterministic # NB: the origin of coordinate system is the bottom left-hand corner, # all points within the simulation domain having positive coordinates. # Number of grains at the beginning? 3 # Input data for grain number 1: # Geometry? # Options: round rectangular elliptic round_inverse round # Center x,z coordinates [micrometers], grain number 1? 0.00000 147.000 # Grain radius? [micrometers] 147.000 # Shall grain 1 be stabilized or shall # an analytical curvature description be applied? # Options: stabilisation analytical_curvature stabilisation # Should the Voronoi criterion be applied? # Options: voronoi no_voronoi voronoi # Phase number? (integer) 1 # Miller indices h,k,l or vector in y-direction [3 reals in one line] +0.000 +0.000 +1.000 # Miller indices u,v,w or vector in z-direction [3 reals in one line] +1.000 +1.000 +0.000 # Input data for grain number 2: # Geometry? # Options: round rectangular elliptic round_inverse round # Center x,z coordinates [micrometers], grain number 2? 0.00000 453.000 # Grain radius? [micrometers] 147.000 # Shall grain 2 be stabilized or shall # an analytical curvature description be applied? # Options: stabilisation analytical_curvature stabilisation # Should the Voronoi criterion be applied? # Options: voronoi no_voronoi voronoi # Phase number? (integer) 1 # Miller indices h,k,l or vector in y-direction [3 reals in one line] +0.000 +0.000 +1.000 # Miller indices u,v,w or vector in z-direction [3 reals in one line] +1.000 +1.000 +0.000 # Input data for grain number 3: # Geometry? # Options: round rectangular elliptic round_inverse round # Center x,z coordinates [micrometers], grain number 3? 0.00000 300.000 # Grain radius? [micrometers] 6.00000 # Shall grain 3 be stabilized or shall # an analytical curvature description be applied? # Options: stabilisation analytical_curvature stabilisation # Should the Voronoi criterion be applied? # Options: voronoi no_voronoi voronoi # Phase number? (integer) 2 # Miller indices h,k,l or vector in y-direction [3 reals in one line] +0.000 +0.000 +1.000 # Miller indices u,v,w or vector in z-direction [3 reals in one line] +1.000 +1.000 +0.000 # # # Data for further nucleation # =========================== # Enable further nucleation? # Options: nucleation nucleation_symm no_nucleation [verbose|no_verbose] no_nucleation # # # Phase interaction data # ====================== # # Data for phase interaction 0 / 1: # --------------------------------- # Simulation of interaction between phases 0 and 1? # Options: phase_interaction no_phase_interaction # [standard|particle_pinning[_temperature]|solute_drag] # | [redistribution_control] no_phase_interaction # # Data for phase interaction 0 / 2: # --------------------------------- # Simulation of interaction between phases 0 and 2? # Options: phase_interaction no_phase_interaction identical phases nb # [standard|particle_pinning[_temperature]|solute_drag] # | [redistribution_control] no_phase_interaction # # Data for phase interaction 1 / 1: # --------------------------------- # Simulation of interaction between phases 1 and 1? # Options: phase_interaction no_phase_interaction identical phases nb # [standard|particle_pinning[_temperature]|solute_drag] # | [redistribution_control] phase_interaction # Type of interfacial energy definition between phases 1 and 1? # Options: constant temp_dependent constant # Interfacial energy between phases 1 and 1? [J/cm**2] # [max. value for num. interface stabilisation [J/cm**2]] 7.60000E-05 # Type of mobility definition between phases 1 and 1? # Options: constant temp_dependent dg_dependent [fixed_minimum] constant # Kinetic coefficient mu between phases 1 and 1 [ min. value ] [cm**4/(Js)] ? 0.350000E-05 # Shall misorientation be considered? # Options: misorientation no_misorientation # [low_angle_limit (degrees)] default:15 [special_orient (nb)] no_misorientation # # Data for phase interaction 1 / 2: # --------------------------------- # Simulation of interaction between phases 1 and 2? # Options: phase_interaction no_phase_interaction identical phases nb # [standard|particle_pinning[_temperature]|solute_drag] # | [redistribution_control] phase_interaction redistribution_control # 'DeltaG' options: default # avg ...[] max ...[J/cm^3] smooth ...[Deg] noise ...[J/cm^3] offset ...[J/cm^3] avg 0. smooth 45 # I.e.: avg +0.00 smooth +0.0 # Type of interfacial energy definition between phases 1 and 2? # Options: constant temp_dependent constant # Interfacial energy between phases 1 and 2? [J/cm**2] # [max. value for num. interface stabilisation [J/cm**2]] 7.2000E-05 # Type of mobility definition between phases 1 and 2? # Options: constant temp_dependent dg_dependent [fixed_minimum] constant # Kinetic coefficient mu between phases 1 and 2 [ min. value ] [cm**4/(Js)] ? 1.0000E-04 # Shall misorientation be considered? # Options: misorientation no_misorientation # [low_angle_limit (degrees)] default:15 [special_orient (nb)] no_misorientation # Is interaction isotropic? # Options: isotropic # anisotropic [junction_force] [harmonic_expansion] isotropic # # Data for phase interaction 2 / 2: # --------------------------------- # Simulation of interaction between phases 2 and 2? # Options: phase_interaction no_phase_interaction identical phases nb # [standard|particle_pinning[_temperature]|solute_drag] # | [redistribution_control] phase_interaction # Type of interfacial energy definition between phases 2 and 2? # Options: constant temp_dependent constant # Interfacial energy between phases 2 and 2? [J/cm**2] # [max. value for num. interface stabilisation [J/cm**2]] 7.60000E-05 # Type of mobility definition between phases 2 and 2? # Options: constant temp_dependent dg_dependent [fixed_minimum] constant # Kinetic coefficient mu between phases 2 and 2 [ min. value ] [cm**4/(Js)] ? 5.000E-08 # Shall misorientation be considered? # Options: misorientation no_misorientation # [low_angle_limit (degrees)] default:15 [special_orient (nb)] no_misorientation # # # Concentration data # ================== # Number of dissolved constituents? (int) 2 # Type of concentration? # Options: atom_percent (at%) # weight_percent (wt%) weight_percent # # # Diffusion Data # -------------- # ["Terse Mode": Each line starts with component number and phase number] # Options: diagonal [x] multi [y(1..k)] multi_plus [y(1..k)] # x: one of the characters "n", "d", "i", "I", or "f" # y: concatenation of "n", "d" or "f" (for each component) # default: "d" resp. "dddd..." # Rem: "n":no diffusion, "d": input, "f": T-dep. from file # "i":infinite, "I": infinite in each grain # Extra line option: [+b] for grain-boundary diffusion # Extra line option (prefactor on time step): cushion <0-1> # Extra line option: infinite_limit [cm**2/s] # Extra line option: factor [real > 0.] # Finish input of diffusion data with 'end_diffusion_data'. # # How shall diffusion of component 1 in phase 0 be solved? diagonal n # How shall diffusion of component 1 in phase 1 be solved? diagonal d # Diff.-coefficient: # Prefactor? (real) [cm**2/s] 0.12300 # Activation energy? (real) [J/mol] 98290. # How shall diffusion of component 1 in phase 2 be solved? diagonal d # Diff.-coefficient: # Prefactor? (real) [cm**2/s] 0.23400 # Activation energy? (real) [J/mol] 1.47700E+05 # How shall diffusion of component 2 in phase 0 be solved? diagonal n # How shall diffusion of component 2 in phase 1 be solved? diagonal d # Diff.-coefficient: # Prefactor? (real) [cm**2/s] 0.15900 # Activation energy? (real) [J/mol] 2.61600E+05 # How shall diffusion of component 2 in phase 2 be solved? diagonal d # Diff.-coefficient: # Prefactor? (real) [cm**2/s] 127.00 # Activation energy? (real) [J/mol] 2.70800E+05 # # # Phase diagram - input data # ========================== # # List of phases and components which are stoichiometric: # phase and component(s) numbers # List of concentration limits (at%): # , phase number and component number # List for ternary extrapolation (2 elements + main comp.): # , component 1, component 2 # Switches: # List of relative criteria on phase composition # , phase No 1, phase No 2, component No # List of source changes for diffusion data # , Phase-No., reference phase # Switch: Add composition sets for calculation of diffusion/volume/enthalpy data # , phase list # End with 'no_more_stoichio' or 'no_stoichio' no_stoichio # # Is a thermodynamic database to be used? # Options: database database_verbose database_consistent no_database no_database # # Input of the phase diagram of phase 1 and phase 2: # -------------------------------------------------- # Which phase diagram is to be used? # Options: linear linearTQ linear # Temperature of reference point? [K] 1025.00 # Entropy of fusion between phase 1 and 2 ? [J/(cm**3 K)] -0.37 # Input of the concentrations at reference points # Reference point 1: Concentration of component 1 in phase 1 ? [wt%] 0.025747126 # Reference point 2: Concentration of component 1 in phase 2 ? [wt%] 0.625287356 # Reference point 1: Concentration of component 2 in phase 1 ? [wt%] 1.5347996 # Reference point 2: Concentration of component 2 in phase 2 ? [wt%] 3.7999517 # Input of the slopes at reference points # Slope m = dT/dC at reference point 1, component 1 ? [K/wt%] -6214.285714 # Slope m = dT/dC at reference point 2, component 1 ? [K/wt%] -255.8823529 # Slope m = dT/dC at reference point 1, component 2 ? [K/wt%] -98.825044 # Slope m = dT/dC at reference point 2, component 2 ? [K/wt%] -22.661476 # Please specify the redistribution behaviour of each component: # Format: forward [backward] # Options: nple para paratq normal [mob_corr] atc [mob_corr] [verbose] # Component 1: normal # Component 2: normal # # # Initial concentrations # ====================== # How shall initial concentrations be set? # Options: input equilibrium from_file [phase number] input # Initial concentration of component 1 in phase 0 ? [wt%] 0.000000000 # Initial concentration of component 1 in phase 1 ? [wt%] 3.9000000000E-02 # Initial concentration of component 1 in phase 2 ? [wt%] 3.9000000000E-02 # Initial concentration of component 2 in phase 0 ? [wt%] 0.000000000 # Initial concentration of component 2 in phase 1 ? [wt%] 1.650000000 # Initial concentration of component 2 in phase 2 ? [wt%] 1.650000000 # # # Parameters for latent heat and 1D temperature field # =================================================== # Simulate release of latent heat? # Options: lat_heat no_lat_heat no_lat_heat_dsc no_lat_heat # # # Boundary conditions # =================== # Type of temperature trend? # Options: linear linear_from_file profiles_from_file linear # Number of connecting points? (integer) 0 # Initial temperature at the bottom? (real) [K] 1150.000 # Temperature gradient in z-direction? [K/cm] 0.0000 # Cooling rate? [K/s] 0.0000 # Moving-frame system in z-direction? # Options: moving_frame no_moving_frame no_moving_frame # # Boundary conditions for phase field in each direction # Options: i (insulation) s (symmetric) p (periodic/wrap-around) # g (gradient) f (fixed) w (wetting) # Sequence: W E (S N, if 3D) B T borders pppp # # Boundary conditions for concentration field in each direction # Options: i (insulation) s (symmetric) p (periodic/wrap-around) g (gradient) f (fixed) # Sequence: W E (S N, if 3D) B T borders pppp # Unit-cell model symmetric with respect to the x/y diagonal plane? # Options: unit_cell_symm no_unit_cell_symm no_unit_cell_symm # # # Other numerical parameters # ========================== # Phase minimum? 1.00E-04 # Interface thickness (in cells)? 6.00 # #